HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
文本简化
Text Simplification On Turkcorpus
Text Simplification On Turkcorpus
评估指标
BLEU
FKGL
SARI (EASSEu003e=0.2.1)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
BLEU
FKGL
SARI (EASSEu003e=0.2.1)
Paper Title
Repository
GPT-175B (6 SARI-selected examples, high/low)
79.83
9.33
43.46
Metric-Based In-context Learning: A Case Study in Text Simplification
MUSS (BART+ACCESS Supervised)
78.17
7.60
42.53
MUSS: Multilingual Unsupervised Sentence Simplification by Mining Paraphrases
Control Prefixes (BART)
-
7.74
42.32
Control Prefixes for Parameter-Efficient Text Generation
TST
-
-
41.46
Text Simplification by Tagging
ACCESS
72.53
-
41.38
Controllable Sentence Simplification
MUSS (BART+ACCESS Unsupervised)
-
8.79
40.85
MUSS: Multilingual Unsupervised Sentence Simplification by Mining Paraphrases
DMASS-DCSS
-
-
40.45
Integrating Transformer and Paraphrase Rules for Sentence Simplification
SBMT-SARI
73.08*
-
39.56
Optimizing Statistical Machine Translation for Text Simplification
-
EditNTS
86.69
-
38.22
EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
PBMT-R
-
-
38.04
-
-
Edit-Unsup-TS
73.62
-
37.85
Iterative Edit-Based Unsupervised Sentence Simplification
Pointer + Multi-task Entailment and Paraphrase Generation
81.49
-
37.45
Dynamic Multi-Level Multi-Task Learning for Sentence Simplification
-
Dress-LS
80.12
-
37.27
Sentence Simplification with Deep Reinforcement Learning
NTS-SARI
80.69
-
37.25
Exploring Neural Text Simplification Models
-
UNMT (Unsupervised)
74.02
-
37.20
Unsupervised Neural Text Simplification
UNTS-10k (Weakly supervised)
-
-
37.15
Unsupervised Neural Text Simplification
Dress
77.18
-
37.08
Sentence Simplification with Deep Reinforcement Learning
SeqLabel
-
-
37.08*
Learning How to Simplify From Explicit Labeling of Complex-Simplified Text Pairs
-
NSELSTM-S
80.43
-
36.88
Sentence Simplification with Memory-Augmented Neural Networks
-
SEMoses
74.49
-
36.70
Simple and Effective Text Simplification Using Semantic and Neural Methods
-
0 of 25 row(s) selected.
Previous
Next