Command Palette

Search for a command to run...

时间序列预测

时间序列预测是通过对历史时间戳数据拟合模型来预测未来值的任务。该任务旨在利用统计和机器学习方法,从时间序列数据中提取模式和趋势,以实现对未来数据点的准确预测。传统方法包括移动平均、指数平滑和ARIMA模型,而现代技术如循环神经网络(RNN)、Transformer和XGBoost也被广泛应用。时间序列预测在金融、气象、能源等领域具有重要应用价值,模型性能通常通过均方误差(MSE)或均方根误差(RMSE)进行评估。

ETTh1 (336) Multivariate
D-PAD
ETTh1 (720) Multivariate
ETTh2 (720) Multivariate
PatchMixer
ETTh2 (336) Multivariate
PatchMixer
ETTh1 (192) Multivariate
ETTh2 (96) Multivariate
ETTh2 (192) Multivariate
PatchMixer
ETTh1 (96) Multivariate
Weather (192)
SegRNN
ETTh1 (720) Univariate
AutoCon
Weather (96)
SCNN
Electricity (96)
CycleNet
ETTh2 (720) Univariate
Informer
Weather (720)
SegRNN
Weather (336)
ETTh1 (336) Univariate
SegRNN
ETTh2 (336) Univariate
Informer
ETTm2 (192) Multivariate
ETTm1 (192) Multivariate
ETTm1 (96) Multivariate
ETTm2 (96) Multivariate
Electricity (336)
ETTm2 (720) Multivariate
LTBoost (drop_last=false)
ETTm2 (336) Multivariate
LTBoost (drop_last=false)
ETTm1 (720) Multivariate
Electricity (192)
CycleNet
Electricity (720)
MoLE-RMLP
ETTm1 (336) Multivariate
PeMSD7
STGCN(1st)
MLO-Cn2
ETTh1 (96) Univariate
NLinear
ETTh2 (192) Univariate
PatchMixer
ETTh2 (96) Univariate
ETTh1 (192) Univariate
USNA-Cn2 (short-duration)
ETTh1 (24) Univariate
ETTh2 (24) Univariate
ETTh1 (24) Multivariate
SCINet
ETTh2 (24) Multivariate
ETTh2 (48) Multivariate
ETTh1 (168) Univariate
ETTh2 (168) Univariate
ETTh2 (48) Univariate
SCINet
ETTh1 (168) Multivariate
ETTh1 (48) Multivariate
ETTh1 (48) Univariate
ETTh2 (168) Multivariate
Traffic (192)
Traffic (96)
Traffic (336)
TSMixer
Traffic (720)
TSMixer
Weather2K1786 (96)
Weather2K1786 (192)
Extreme Events > Natural Disasters > Hurricane
UberNN
Weather2K1786 (720)
Weather2K850 (96)
ETTh1 (96)
Weather2K850 (336)
Weather2K79 (192)
Weather2K850 (720)
Korea Composite Stock Price Index
Illness (24)
Solar (192)
Weather2K114 (96)
Weather2K79 (336)
Exchange (96)
Weather2K79 (720)
Solar (96)
Illness (36)
Illness (60)
xPatch
Weather2K114 (720)
Weather2K114 (192)
Weather2K79 (96)
Weather2K850 (192)
ETTh1 (48)
Time-LLM
Weather
ETTh1
Weather2K114 (336)
Consumer Spendings
Solar (720)
Exchange (192)
Solar (336)
Exchange (336)
Weather2K1786 (336)
Illness (48)
Exchange (720)
时间序列预测 | SOTA | HyperAI超神经