Traffic Prediction On Pems Bay
评估指标
MAE @ 12 step
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | MAE @ 12 step |
---|---|
spatial-temporal-attention-wavenet-a-deep | 1.89 |
spatio-temporal-adaptive-embedding-makes | 1.91 |
predicting-traffic-signals-on-transportation | - |
spatio-temporal-decoupled-masked-pre-training | 1.77 |
spatio-temporal-meta-graph-learning-for | 1.88 |
190600121 | 1.95 |
rgdan-a-random-graph-diffusion-attention | 1.86 |
spatio-temporal-graph-structure-learning-for | 2.03 |
conditional-temporal-neural-processes-with | 1.91 |
spatio-temporal-graph-mixformer-for-traffic | 1.857 |
gman-a-graph-multi-attention-network-for | 1.92 |
pre-training-enhanced-spatial-temporal-graph | 1.79 |
decoupled-dynamic-spatial-temporal-graph | 1.85 |
t-graphormer-using-transformers-for | 1.63 |
diffusion-convolutional-recurrent-neural | 2.07 |
a-time-series-is-worth-five-experts-1 | 1.69 |