HyperAI超神经

Unsupervised Domain Adaptation On Cityscapes 1

评估指标

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称[email protected]
adapting-object-detectors-via-selective-cross33.8
spatial-attention-pyramid-network-for40.9
align-and-distill-unifying-and-improving61.4
diversify-and-match-a-domain-adaptive34.6
decompose-to-adapt-cross-domain-object42.3
seeking-similarities-over-differences43.3
align-and-distill-unifying-and-improving59.2
awada-attention-weighted-adversarial-domain44.8
adaptive-object-detection-with-dual-multi38.8
improving-transferability-for-domain-adaptive46.8
synthetic-to-real-unsupervised-domain41.87
strong-weak-distribution-alignment-for34.8
align-and-distill-unifying-and-improving54.2
align-and-distill-unifying-and-improving44.8
to-miss-attend-is-to-misalign-residual-self43.8
align-and-distill-unifying-and-improving62.5
self-adversarial-disentangling-for-specific45.2
improving-object-detection-via-local-global45.3
align-and-distill-unifying-and-improving63.3
bi-dimensional-feature-alignment-for-cross42.5
improving-object-detection-via-local-global46.7
mic-masked-image-consistency-for-context47.6
domain-adaptive-faster-r-cnn-for-object26.1
align-and-distill-unifying-and-improving61.7
align-and-distill-unifying-and-improving66.8
masked-retraining-teacher-student-framework51.2