Unsupervised Video Object Segmentation On 10
评估指标
F
G
J
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | F | G | J |
---|---|---|---|
reciprocal-transformations-for-unsupervised | 84.7 | 85.2 | 85.6 |
improving-unsupervised-video-object-1 | 89.0 | 88.5 | 88.0 |
iteratively-selecting-an-easy-reference-frame | 86.7 | 85.6 | 84.5 |
deep-transport-network-for-unsupervised-video | 85.0 | 84.8 | 84.5 |
treating-motion-as-option-to-reduce-motion | 87.8 | 87.2 | 86.6 |
learning-unsupervised-video-object | 77.4 | 78.6 | 79.7 |
pyramid-dilated-deeper-convlstm-for-video | 74.5 | 75.9 | 77.2 |
making-a-case-for-3d-convolutions-for-object | 84.7 | 84.5 | 84.3 |
guided-slot-attention-for-unsupervised-video | 89.6 | 88.9 | 88.3 |
self-supervised-video-object-segmentation-1 | 86.6 | 85.75 | 84.9 |
zero-shot-video-object-segmentation-via-1 | 79.1 | 79.9 | 80.7 |
unsupervised-video-object-segmentation-via | 86.4 | 85.9 | 85.4 |
treating-motion-as-option-to-reduce-motion | 86.6 | 86.1 | 85.6 |
adaptive-multi-source-predictor-for-zero-shot | 87.5 | 87.3 | 87.1 |
tracking-anything-with-decoupled-video | 90.2 | 88.9 | 87.6 |
motion-attentive-transition-for-zero-shot | 80.7 | 81.6 | 82.4 |
learning-motion-appearance-co-attention-for | 84.6 | 84.6 | 84.5 |
d2conv3d-dynamic-dilated-convolutions-for | 86.5 | 86.0 | 85.5 |
learning-discriminative-feature-with-crf-for | 81.8 | 82.6 | 83.4 |
full-duplex-strategy-for-video-object | 83.1 | 83.3 | 83.4 |
domain-alignment-and-temporal-aggregation-for | 88.4 | 87.6 | 86.8 |
see-more-know-more-unsupervised-video-object-1 | 79.4 | 80.0 | 80.5 |
f2net-learning-to-focus-on-the-foreground-for | 54.4 | 83.7 | 83.1 |
anchor-diffusion-for-unsupervised-video-1 | 80.5 | 81.1 | 81.7 |
unsupervised-video-object-segmentation-with-2 | 80.7 | 81.5 | 82.2 |