HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
视频帧插值
Video Frame Interpolation On Msu Video Frame
Video Frame Interpolation On Msu Video Frame
评估指标
LPIPS
MS-SSIM
PSNR
SSIM
VMAF
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
LPIPS
MS-SSIM
PSNR
SSIM
VMAF
Paper Title
Repository
EMA-VFI
0.022
0.965
29.89
0.953
71.71
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation
UPR-Net LARGE
0.025
0.962
29.73
0.951
71.34
A Unified Pyramid Recurrent Network for Video Frame Interpolation
DQBC
0.021
0.961
29.45
0.949
72.12
Video Frame Interpolation with Densely Queried Bilateral Correlation
EBME-H
0.024
0.958
28.77
0.931
68.20
Enhanced Bi-directional Motion Estimation for Video Frame Interpolation
EBME
0.028
0.957
28.56
0.928
69.37
Enhanced Bi-directional Motion Estimation for Video Frame Interpolation
VFIformer
0.044
0.942
28.34
0.917
68.87
Video Frame Interpolation with Transformer
FILM
0.033
0.948
28.11
0.928
68.68
FILM: Frame Interpolation for Large Motion
IFRNet_large
0.037
0.943
28.04
0.921
66.98
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
CURE
0.029
0.946
28.01
0.920
67.07
Learning Cross-Video Neural Representations for High-Quality Frame Interpolation
ABME
0.039
0.945
27.99
0.919
68.10
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation
XVFI (S_{tst}=5)
0.049
0.955
27.86
0.921
67.25
XVFI: eXtreme Video Frame Interpolation
IFRNet_base
0.048
0.932
27.67
0.909
64.16
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
IFRNet_small
0.049
0.931
27.45
0.908
63.43
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
XVFI (S_{tst}=3)
0.061
0.933
27.35
0.913
63.47
XVFI: eXtreme Video Frame Interpolation
RIFE
0.039
0.939
27.15
0.914
66.33
Real-Time Intermediate Flow Estimation for Video Frame Interpolation
CDFI
0.051
0.926
26.99
0.908
61.72
CDFI: Compression-Driven Network Design for Frame Interpolation
Super-SloMo
0.068
0.924
26.69
0.904
61.35
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
SepConv-L1
-
-
26.36
-
-
Video Frame Interpolation via Adaptive Separable Convolution
RRIN
0.072
0.902
25.76
0.893
59.82
Video Frame Interpolation via Residue Refinement
-
AdaCoF_f
0.058
0.913
24.99
0.903
60.19
AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation
0 of 24 row(s) selected.
Previous
Next