Zero Shot Transfer Image Classification On 3
评估指标
Accuracy (Private)
Accuracy (Public)
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | Accuracy (Private) | Accuracy (Public) |
---|---|---|
lit-zero-shot-transfer-with-locked-image-text | 78.7 | 66.6 |
internvl-scaling-up-vision-foundation-models | 77.3 | - |
pali-a-jointly-scaled-multilingual-language | 64.46 | - |
coca-contrastive-captioners-are-image-text | 80.7 | - |
altclip-altering-the-language-encoder-in-clip | 68.1 | - |
pali-a-jointly-scaled-multilingual-language | 80.6 | - |
scaling-up-visual-and-vision-language | 70.1 | - |
eva-clip-improved-training-techniques-for | 75.7 | - |
模型 9 | 81.2 | - |
eva-clip-18b-scaling-clip-to-18-billion | 77.9 | - |
scaling-vision-transformers-to-22-billion | 80.9 | - |
combined-scaling-for-zero-shot-transfer | 80.6 | - |
learning-transferable-visual-models-from | 70.1 | - |