Command Palette
Search for a command to run...
Mohammad Mahdi Derakhshani Enrique Sanchez Adrian Bulat Victor Guilherme Turrisi da Costa Cees G. M. Snoek Georgios Tzimiropoulos Brais Martinez

摘要
基础图像-语言模型因其通过提示学习(prompt learning)实现对下游任务的高效适应而受到广泛关注。提示学习将语言模型输入的一部分视为可训练参数,其余部分则保持冻结,并优化经验风险最小化(Empirical Risk Minimization, ERM)目标。然而,经验风险最小化已知在分布外(distributional shift)情况下表现不佳,导致模型在训练中未见过的提示上泛化能力下降。为此,本文利用贝叶斯方法的正则化能力,从贝叶斯视角重新审视提示学习,并将其建模为变分推断(variational inference)问题。所提出的方法对提示空间进行正则化,有效缓解了对已见提示的过拟合问题,显著提升了模型在未见提示上的泛化性能。本框架通过概率化建模输入提示空间,引入先验分布(a priori distribution),使方法能够兼容无条件或基于图像条件的各类提示学习范式。在15个基准测试上的实证结果表明,贝叶斯提示学习能够实现对提示空间的合理覆盖,有效避免学习虚假特征,并充分挖掘可迁移的不变特征。这一优势使得模型在跨数据集、跨领域场景下对未见提示仍具备更强的泛化能力。代码已开源,地址为:https://github.com/saic-fi/Bayesian-Prompt-Learning
代码仓库
saic-fi/bayesian-prompt-learning
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 | 
|---|---|---|
| few-shot-learning-on-caltech101 | Variational Prompt Tuning | Harmonic mean: 96.44  | 
| few-shot-learning-on-dtd | Variational Prompt Tuning | Harmonic mean: 67.27  | 
| few-shot-learning-on-eurosat | Variational Prompt Tuning | Harmonic mean: 77.71  | 
| few-shot-learning-on-fgvc-aircraft-1 | Variational Prompt Tuning | Harmonic mean: 34.69  | 
| few-shot-learning-on-flowers-102 | Variational Prompt Tuning | Harmonic mean: 81.12  | 
| few-shot-learning-on-food101 | Variational Prompt Tuning | Harmonic mean: 91.57  | 
| few-shot-learning-on-oxfordpets | Variational Prompt Tuning | Harmonic mean: 96.82  | 
| few-shot-learning-on-stanforcars | Variational Prompt Tuning | Harmonic mean: 73.07  | 
| few-shot-learning-on-sun397 | Variational Prompt Tuning | Harmonic mean: 78.51  | 
| few-shot-learning-on-ucf101 | Variational Prompt Tuning | Harmonic mean: 79  |