HyperAIHyperAI

Command Palette

Search for a command to run...

PANDA:超越重连的扩展宽度感知消息传递

Jeongwhan Choi¹ Sumin Park² Hyowon Wi¹ Sung-Bae Cho¹ Noseong Park³

摘要

近期在图神经网络(GNN)领域的研究发现了一个关键问题,称为“过度压缩”(over-squashing),这是由于图结构中的瓶颈现象导致的,阻碍了远距离信息的传播。先前的研究工作提出了多种图重连概念,旨在通过优化图的空间或频谱属性来促进信号传播。然而,这些方法不可避免地会损害原始图的拓扑结构,可能导致信息流的扭曲。为了解决这一问题,我们引入了一种扩展宽度感知的消息传递机制(PANDA),这是一种新的消息传递范式,其中具有高中心性的节点(潜在的过度压缩源)被选择性地扩展宽度,以封装来自远距离节点不断增加的信号流入。实验结果表明,我们的方法优于现有的图重连方法,这表明选择性地扩展节点的隐藏状态可以成为解决过度压缩问题的一种有吸引力的替代方案。


用 AI 构建 AI

从创意到上线——通过免费 AI 协同编码、开箱即用的环境和最优惠的 GPU 价格,加速您的 AI 开发。

AI 协同编码
开箱即用的 GPU
最优定价

HyperAI Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供