HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
异常检测
Anomaly Detection On Chuk Avenue
Anomaly Detection On Chuk Avenue
评估指标
AUC
RBDC
TBDC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUC
RBDC
TBDC
Paper Title
Repository
MULDE-object-centric-micro
94.3%
-
-
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
AMSRC
93.8%
-
-
A Video Anomaly Detection Framework based on Appearance-Motion Semantics Representation Consistency
-
SSMTL++v1
93.7%
40.9
82.1
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
AI-VAD
93.7%
-
-
An Attribute-based Method for Video Anomaly Detection
Background-Agnostic Framework+SSMCTB
93.2%
66.04
65.12
Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection
SSMTL+UBnormal
93.0%
61.10
61.38
UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection
Background- Agnostic Framework+SSPCAB
92.9%
65.99
-
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
VideoPatchCore
92.8%
-
-
VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection
DMAD
92.8%
-
-
Diversity-Measurable Anomaly Detection
PGM
92.72%
60.18
72.09
Bounding Boxes and Probabilistic Graphical Models: Video Anomaly Detection Simplified
Background-Agnostic Framework
92.3%
65.05
66.85
A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video
SSMTL++v2
91.6%
47.8
85.2
-
-
SSMTL
91.5%
57.00
58.30
Anomaly Detection in Video via Self-Supervised and Multi-Task Learning
SD-MAE
91.3%
46.77
66.58
Self-Distilled Masked Auto-Encoders are Efficient Video Anomaly Detectors
MAMA
91.2%
-
-
Making Anomalies More Anomalous: Video Anomaly Detection Using a Novel Generator and Destroyer
-
VALD-GAN
91.03
-
-
VALD-GAN: video anomaly detection using latent discriminator augmented GAN
-
Two-stream
90.8%
-
-
Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework for Video Anomaly Detection
AnomalyRuler
89.7%
-
-
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
Cloze Test
89.6%
-
-
Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events
Narrowed Normality Clusters
88.9%
-
-
Detecting abnormal events in video using Narrowed Normality Clusters
-
0 of 35 row(s) selected.
Previous
Next
Anomaly Detection On Chuk Avenue | SOTA | HyperAI超神经