HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Anomaly Detection
Anomaly Detection On Mvtec Loco Ad
Anomaly Detection On Mvtec Loco Ad
评估指标
Avg. Detection AUROC
Detection AUROC (only logical)
Detection AUROC (only structural)
Segmentation AU-sPRO (until FPR 5%)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Avg. Detection AUROC
Detection AUROC (only logical)
Detection AUROC (only structural)
Segmentation AU-sPRO (until FPR 5%)
Paper Title
Repository
SPADE
68.9
70.9
66.8
45.1
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
LADMIM
86.0
83.1
90.3
-
LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space
-
SLSG
90.3
89.6
91.4
67.3
SLSG: Industrial Image Anomaly Detection by Learning Better Feature Embeddings and One-Class Classification
-
CSAD
95.3
96.7
94.0
-
CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
DADF
83.7
79.2
88.2
67.4
Visual Anomaly Detection via Dual-Attention Transformer and Discriminative Flow
-
PatchCore
80.3
75.8
-
39.7
Towards Total Recall in Industrial Anomaly Detection
AST
-
79.7
87.1
42.7
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection
SINBAD
86.8
88.9
84.7
-
Set Features for Fine-grained Anomaly Detection
PSAD
94.9
98.1
91.6
-
Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection
ComAD+AST
89.8
90.1
89.4
-
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
Student-Teacher
77.3
66.4
88.3
-
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
PatchCore Ensemble
79.4
71.0
87.7
36.5
Towards Total Recall in Industrial Anomaly Detection
DSR
82.6
75.0
90.2
58.5
DSR -- A dual subspace re-projection network for surface anomaly detection
MNAD
65.1
60.0
70.2
33.9
Learning Memory-guided Normality for Anomaly Detection
HETMM
88.1
83.2
92.9
-
Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection
SINBAD Ens
88.3
91.2
85.5
-
Set Features for Anomaly Detection
DSKD
84.0
81.2
86.9
73.0
Contextual Affinity Distillation for Image Anomaly Detection
-
f-AnoGAN
64.2
65.8
62.7
33.4
f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks
PUAD-S
93.1
92.0
94.1
-
PUAD: Frustratingly Simple Method for Robust Anomaly Detection
SINBAD+EfficientAD
94.2
95.8
94.2
-
Set Features for Anomaly Detection
0 of 40 row(s) selected.
Previous
Next