HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
异常检测
Anomaly Detection On One Class Cifar 100
Anomaly Detection On One Class Cifar 100
评估指标
AUROC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUROC
Paper Title
Repository
GeneralAD
98.4
GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features
Transformaly
97.7
Transformaly -- Two (Feature Spaces) Are Better Than One
PANDA-OE
97.3
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Mean-Shifted Contrastive Loss
96.5
Mean-Shifted Contrastive Loss for Anomaly Detection
PANDA
94.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
CSI
89.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
GAN based Anomaly Detection in Imbalance Problems
87.4
GAN-based Anomaly Detection in Imbalance Problems
-
DisAug CLR
86.5
Learning and Evaluating Representations for Deep One-class Classification
DUIAD
86
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework
-
Rotation Prediction
84.1
Learning and Evaluating Representations for Deep One-class Classification
MTL
83.95
Shifting Transformation Learning for Out-of-Distribution Detection
-
Self-Supervised Multi-Head RotNet
80.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Geom
78.7
Deep Anomaly Detection Using Geometric Transformations
Self-Supervised DeepSVDD
67
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised One-class SVM, RBF kernel
62.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
0 of 15 row(s) selected.
Previous
Next
Anomaly Detection On One Class Cifar 100 | SOTA | HyperAI超神经