HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Anomaly Detection
Anomaly Detection On One Class Imagenet 30
Anomaly Detection On One Class Imagenet 30
评估指标
AUROC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUROC
Paper Title
Repository
RotNet + Translation
77.9
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation + Self-Attention
84.8
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet
65.3
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
CSI
91.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
RotNet + Translation + Self-Attention + Resize
85.7
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
FCDD
91
Explainable Deep One-Class Classification
CLIP (Zero Shot)
99.88
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-Clip (OE)
99.90
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
RotNet + Self-Attention
81.6
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Supervised (OE)
56.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Binary Cross Entropy (OE)
97.7
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 11 row(s) selected.
Previous
Next