HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Anomaly Detection
Anomaly Detection On Ubnormal
Anomaly Detection On Ubnormal
评估指标
AUC
RBDC
TBDC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUC
RBDC
TBDC
Paper Title
Repository
Background-Agnostic Framework
61.3%
25.43
56.27
A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video
TimeSformer
68.5%
0.04
0.05
Is Space-Time Attention All You Need for Video Understanding?
AnomalyRuler
71.9%
-
-
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
MULDE-frame-centric-micro-one-class-classification
72.8%
-
-
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
COSKAD-euclidean
64.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
MIL
50.3%
0.002
0.001
Real-world Anomaly Detection in Surveillance Videos
STG-NF - Unsupervised
71.8%
-
-
Normalizing Flows for Human Pose Anomaly Detection
COSKAD-radial
62.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
COSKAD-hyperbolic
65%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
BiPOCO
50.7
-
-
BiPOCO: Bi-Directional Trajectory Prediction with Pose Constraints for Pedestrian Anomaly Detection
FPDM
62.7
-
-
Feature Prediction Diffusion Model for Video Anomaly Detection
-
SSMTL++v1
62.1%
25.63
63.53
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
STG-NF - Supervised
79.2%
-
-
Normalizing Flows for Human Pose Anomaly Detection
MoCoDAD
68.3%
-
-
Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
0 of 14 row(s) selected.
Previous
Next