HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Fine Grained Image Classification
Fine Grained Image Classification On Food 101
Fine Grained Image Classification On Food 101
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Grafit (RegNet-8GF)
93.7
Grafit: Learning fine-grained image representations with coarse labels
-
CSWin-L
93.81
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
NAT-M4
89.4
Neural Architecture Transfer
NAT-M1
87.4
Neural Architecture Transfer
Assemble-ResNet-FGVC-50
92.5
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
CAP
98.6
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
DoD (SwinV2-B)
94.9
Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition
-
µ2Net+ (ViT-L/16)
91.47
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
VOLO-D5
93.66
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
EffNet-L2 (SAM)
96.18
Sharpness-Aware Minimization for Efficiently Improving Generalization
NAT-M2
88.5
Neural Architecture Transfer
ALIGN
95.88
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
EfficientNet-B7
93.0
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
ImageNet + iNat on WS-DAN
-
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
NAT-M3
89.0
Neural Architecture Transfer
0 of 15 row(s) selected.
Previous
Next