HyperAI超神经

Fine Grained Image Classification On Oxford

评估指标

Accuracy
FLOPS
PARAMS

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称AccuracyFLOPSPARAMS
resnet-strikes-back-an-improved-training97.9%4.124M
grafit-learning-fine-grained-image99.1%--
autoformer-searching-transformers-for-visual---
spinalnet-deep-neural-network-with-gradual-199.30%--
a-comprehensive-study-on-torchvision-pre98.29--
pairwise-confusion-for-fine-grained-visual93.65%--
resmlp-feedforward-networks-for-image97.4%--
neural-architecture-transfer98.1250M3.7M
an-evolutionary-approach-to-dynamic99.61%--
transformer-in-transformer99.0%-65.6M
a-comprehensive-study-on-torchvision-pre98.36--
neural-architecture-transfer-152M3.3M
large-scale-learning-of-general-visual99.30%--
resmlp-feedforward-networks-for-image97.9%--
escaping-the-big-data-paradigm-with-compact-15G22.5M
autoaugment-learning-augmentation-policies95.36%--
fine-grained-visual-classification-via-299.64%--
neural-architecture-transfer97.9195M3.4M
fixing-the-train-test-resolution-discrepancy95.7%--
compounding-the-performance-improvements-of98.9%--
large-scale-learning-of-general-visual99.63%--
tresnet-high-performance-gpu-dedicated99.1%--
sr-gnn-spatial-relation-aware-graph-neural97.9%9.830.9
neural-architecture-transfer98.3400M4.2M
training-data-efficient-image-transformers98.8%-86M