HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Oxford
Fine Grained Image Classification On Oxford
评估指标
Accuracy
FLOPS
PARAMS
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
FLOPS
PARAMS
Paper Title
Repository
IELT
99.64%
-
-
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
-
BiT-L (ResNet)
99.63%
-
-
Big Transfer (BiT): General Visual Representation Learning
µ2Net (ViT-L/16)
99.61%
-
-
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Wide-ResNet-101 (Spinal FC)
99.30%
-
-
SpinalNet: Deep Neural Network with Gradual Input
BiT-M (ResNet)
99.30%
-
-
Big Transfer (BiT): General Visual Representation Learning
Grafit (RegNet-8GF)
99.1%
-
-
Grafit: Learning fine-grained image representations with coarse labels
-
TResNet-L
99.1%
-
-
TResNet: High Performance GPU-Dedicated Architecture
TNT-B
99.0%
-
65.6M
Transformer in Transformer
Assemble-ResNet
98.9%
-
-
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
DeiT-B
98.8%
-
86M
Training data-efficient image transformers & distillation through attention
DenseNet-201(Spinal FC)
98.36
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
NAT-M4
98.3
400M
4.2M
Neural Architecture Transfer
DenseNet-201
98.29
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
NAT-M3
98.1
250M
3.7M
Neural Architecture Transfer
ResNet50 (A1)
97.9%
4.1
24M
ResNet strikes back: An improved training procedure in timm
ResMLP-24
97.9%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
NAT-M2
97.9
195M
3.4M
Neural Architecture Transfer
SR-GNN
97.9%
9.8
30.9
SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained Image Categorization
ResMLP-12
97.4%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
FixInceptionResNet-V2
95.7%
-
-
Fixing the train-test resolution discrepancy
0 of 25 row(s) selected.
Previous
Next
Fine Grained Image Classification On Oxford | SOTA | HyperAI超神经