HyperAI超神经

Monocular Depth Estimation On Nyu Depth V2

评估指标

Delta u003c 1.25
Delta u003c 1.25^2
Delta u003c 1.25^3
RMSE
absolute relative error
log 10

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Delta u003c 1.25Delta u003c 1.25^2Delta u003c 1.25^3RMSEabsolute relative errorlog 10
unik3d-universal-camera-monocular-3d0.9890.9981.0000.1730.0440.019
global-local-path-networks-for-monocular0.9150.9880.9970.3440.0980.042
depth-map-decomposition-for-monocular-depth0.9070.9860.9970.3620.1000.043
structure-attentioned-memory-network-for---0.604--
zero-shot-metric-depth-with-a-field-of-view0.9530.9890.9960.2960.0720.031
primedepth-efficient-monocular-depth0.977---0.046-
hybriddepth-robust-depth-fusion-for-mobile-ar0.9881.0001.0000.1280.026-
unsupervised-depth-learning-in-challenging0.8200.956-0.5320.1380.059
p3depth-monocular-depth-estimation-with-a0.8980.9810.9960.3560.1040.043
vision-transformers-for-dense-prediction0.9040.9880.9940.3570.1100.045
metric3d-v2-a-versatile-monocular-geometric-10.9890.9981.0000.1830.0470.020
dinov2-learning-robust-visual-features0.94970.9960.99940.2790.09070.0371
localbins-improving-depth-estimation-by0.910.9860.9970.3510.0980.042
futuredepth-learning-to-predict-the-future0.9810.9960.9990.2330.0630.027
on-deep-learning-techniques-to-boost---0.429--
a-two-streamed-network-for-estimating-fine---0.635--
metric3d-towards-zero-shot-metric-3d0.9440.9860.9950.3100.0830.035
depth-map-decomposition-for-monocular-depth0.9130.9870.9980.3550.0980.042
nddepth-normal-distance-assisted-monocular0.9360.9910.9980.3110.0870.038
unidepth-universal-monocular-metric-depth0.9840.9970.9990.2010.0580.024
repurposing-diffusion-based-image-generators0.9640.9910.9980.2240.0550.024
unidepthv2-universal-monocular-metric-depth0.9880.9981.0000.1800.0460.020
index-network---0.565--
nvs-monodepth-improving-monocular-depth---0.331--
monocular-depth-estimation-using-diffusion0.9460.987 0.9960.3140.0740.032
new-crfs-neural-window-fully-connected-crfs-10.9220.9920.9980.3340.0950.041
va-depthnet-a-variational-approach-to-single0.9370.9920.9990.3040.0860.037
cutdepth-edge-aware-data-augmentation-in0.8990.9850.9970.3750.1040.044
deep-ordinal-regression-network-for-monocular---0.509--
depthformer-multiscale-vision-transformer-for0.9130.9880.9970.3450.1000.042
analysis-of-nan-divergence-in-training0.93610.99160.99810.30460.08640.0365
d-net-a-generalised-and-optimised-deep0.9190.9880.9970.3540.0950.041
harnessing-diffusion-models-for-visual0.9760.9970.9990.2230.0610.027
improving-deep-regression-with-ordinal0.932--0.3210.0890.039
fast-neural-architecture-search-of-compact---0.526--
mesa-masked-geometric-and-supervised-pre0.9640.9950.9990.2380.0660.029
fine-tuning-image-conditional-diffusion0.966---0.052-
zoedepth-zero-shot-transfer-by-combining0.9550.9950.9990.2700.0750.032
revealing-the-dark-secrets-of-masked-image0.9490.9940.9990.2870.0830.035
prompt-guided-transformer-for-multi-task---0.5468--
prompt-guided-transformer-for-multi-task---0.59--
190508598---0.496--
generating-and-exploiting-probabilistic---0.536--
ddp-diffusion-model-for-dense-visual0.9210.9900.9980.3290.0940.040
adabins-depth-estimation-using-adaptive-bins0.9030.9840.9970.3640.1030.044
polymax-general-dense-prediction-with-mask0.9690.99580.9990.250.0670.029
pattern-affinitive-propagation-across-depth-1---0.497--
from-big-to-small-multi-scale-local-planar--0.9950.392--
unleashing-text-to-image-diffusion-models-for-10.9640.9950.9990.2540.0690.030
large-scale-monocular-depth-estimation-in-the0.9310.9860.9960.3640.0800.033
ecodepth-effective-conditioning-of-diffusion0.9780.9970.9990.2180.0590.026
grin-zero-shot-metric-depth-with-pixel-level---0.2510.051-
predicting-depth-surface-normals-and-semantic---0.641--
irondepth-iterative-refinement-of-single-view0.9100.9850.9970.3520.1010.043
attention-based-context-aggregation-network---0.496--
real-time-joint-semantic-segmentation-and---0.565--
sdc-depth-semantic-divide-and-conquer-network---0.497--
iebins-iterative-elastic-bins-for-monocular-10.9360.9920.9980.3140.0870.038
binsformer-revisiting-adaptive-bins-for0.9250.9890.9970.3300.0940.040
revisiting-single-image-depth-estimation---0.530--
all-in-tokens-unifying-output-space-of-visual0.9540.9940.9990.2750.0760.033
structure-aware-residual-pyramid-network-for---0.514--
fast-neural-architecture-search-of-compact---0.523--
enforcing-geometric-constraints-of-virtual0.8750.9760.9890.4160.1110.048
monocular-depth-estimation-using-laplacian0.8950.9830.9960.3840.1050.045
high-quality-monocular-depth-estimation-via---0.465--
primedepth-efficient-monocular-depth0.966---0.058-
idisc-internal-discretization-for-monocular-0.9930.999-0.086-
text-image-alignment-for-diffusion-based0.9760.9970.9990.2250.0620.027
attention-attention-everywhere-monocular0.9290.9910.9980.3220.0900.039
depth-anything-unleashing-the-power-of-large0.9840.9981.0000.2060.0560.024
depthmaster-taming-diffusion-models-for0.972---0.050-
single-image-depth-estimation-trained-via-1---0.575--
fast-neural-architecture-search-of-compact---0.525--
neural-video-depth-stabilizer0.94930.9910.9970.2820.0720.031
depthformer-exploiting-long-range-correlation0.9210.9890.9980.3390.0960.041
urcdc-depth-uncertainty-rectified-cross0.9330.9920.9980.3160.0880.038
monocular-depth-estimation-using-relative---0.538--
multi-scale-continuous-crfs-as-sequential---0.586--
learning-to-recover-3d-scene-shape-from-a0.916---0.09-
inverted-pyramid-multi-task-transformer-for---0.5183--
focal-wnet-an-architecture-unifying0.8750.9800.9950.3980.1160.048
scaledepth-decomposing-metric-depth0.9570.9940.9990.2670.0740.032
evp-enhanced-visual-perception-using-inverse0.9760.9970.9990.2240.0610.027
distill-any-depth-distillation-creates-a0.981---0.043-