HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
多标签分类
Multi Label Classification On Pascal Voc 2007
Multi Label Classification On Pascal Voc 2007
评估指标
mAP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mAP
Paper Title
Repository
Q2L-CvT(ImageNet-21K pretrained, resolution 384)
97.3
Query2Label: A Simple Transformer Way to Multi-Label Classification
Q2L-TResL(ImageNet-21K pretrained, resolution 448)
96.9
Query2Label: A Simple Transformer Way to Multi-Label Classification
GKGNet
96.8
GKGNet: Group K-Nearest Neighbor based Graph Convolutional Network for Multi-Label Image Recognition
MLD-TResNetL-AAM (resolution 448, pretrain from OpenImages V6)
96.70
Combining Metric Learning and Attention Heads For Accurate and Efficient Multilabel Image Classification
M3TR(448×448)
96.5
M3TR: Multi-modal Multi-label Recognition with Transformer
-
Q2L-TResL(resolution 448)
96.1
Query2Label: A Simple Transformer Way to Multi-Label Classification
MSRN(pretrain from MS-COCO)
96.0
Multi-layered Semantic Representation Network for Multi-label Image Classification
TResNet-L (resolution 448, pretrain from MS-COCO)
95.8
Asymmetric Loss For Multi-Label Classification
TDRG-R101(448×448)
95.0
Transformer-based Dual Relation Graph for Multi-label Image Recognition
SSGRL (pretrain from MS-COCO)
95.0
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
MCAR (ResNet101, 448x448)
94.8
Learning to Discover Multi-Class Attentional Regions for Multi-Label Image Recognition
TResNet-L (resolution 448, pretrain from ImageNet)
94.6
Asymmetric Loss For Multi-Label Classification
ML-GCN (pretrain from ImageNet)
94.0
Multi-Label Image Recognition with Graph Convolutional Networks
SSGRL (pretrain from ImageNet)
93.4
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
Ours PF-DLDL
93.4
Deep Label Distribution Learning with Label Ambiguity
ViT-B-16 (ImageNet-21K pretrained)
93.1
ImageNet-21K Pretraining for the Masses
FeV+LV (pretrain from ImageNet)
92.0
Exploit Bounding Box Annotations for Multi-label Object Recognition
-
0 of 17 row(s) selected.
Previous
Next