HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Video Quality Assessment
Video Quality Assessment On Msu Sr Qa Dataset
Video Quality Assessment On Msu Sr Qa Dataset
评估指标
KLCC
PLCC
SROCC
Type
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
KLCC
PLCC
SROCC
Type
Paper Title
Repository
3SSIM
0.16365
0.20138
0.21450
FR
-
-
ClipIQA+
0.69774
0.71808
0.56875
NR
Exploring CLIP for Assessing the Look and Feel of Images
MUSIQ trained on KONIQ
0.51897
0.59151
0.64589
NR
MUSIQ: Multi-scale Image Quality Transformer
FSIM
0.26942
0.35083
0.34996
FR
FSIM: A Feature Similarity Index for Image Quality Assessment
-
MSE
0.12067
0.09428
0.16441
FR
-
-
PieAPP
0.61945
0.75743
0.75215
FR
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Linearity (Norm-in-Norm Loss)
0.52172
0.62204
0.64382
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
MS-SSIM
0.07821
0.16035
0.11017
FR
Multiscale structural similarity for image quality assessment
TOPIQ (IAA)
0.40663
0.51061
0.51687
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
DBCNN
0.55139
0.63971
0.68621
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
Q-Align (IQA)
0.61677
0.74116
0.75088
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
LPIPS (Alex)
0.43158
0.52385
0.54461
FR
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
PSNR over Y
0.09998
0.13840
0.12914
FR
-
-
TOPIQ trained on PIPAL
0.42811
0.57564
0.55568
FR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
LPIPS (VGG)
0.41471
0.52820
0.52868
FR
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
ERQA
0.47785
0.60188
0.59345
FR
ERQA: Edge-Restoration Quality Assessment for Video Super-Resolution
AHIQ
0.47674
0.62311
0.60468
FR
-
-
VMAF
0.32283
0.40073
0.43219
FR
-
-
DISTS
0.42320
0.55042
0.53346
FR
Image Quality Assessment: Unifying Structure and Texture Similarity
Q-Align (IAA)
0.42211
0.50055
0.51521
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
0 of 60 row(s) selected.
Previous
Next