HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Context-aware Deep Feature Compression for High-speed Visual Tracking

Jongwon Choi; Hyung Jin Chang; Tobias Fischer; Sangdoo Yun; Kyuewang Lee; Jiyeoup Jeong; Yiannis Demiris; Jin Young Choi

Context-aware Deep Feature Compression for High-speed Visual Tracking

Abstract

We propose a new context-aware correlation filter based tracking framework to achieve both high computational speed and state-of-the-art performance among real-time trackers. The major contribution to the high computational speed lies in the proposed deep feature compression that is achieved by a context-aware scheme utilizing multiple expert auto-encoders; a context in our framework refers to the coarse category of the tracking target according to appearance patterns. In the pre-training phase, one expert auto-encoder is trained per category. In the tracking phase, the best expert auto-encoder is selected for a given target, and only this auto-encoder is used. To achieve high tracking performance with the compressed feature map, we introduce extrinsic denoising processes and a new orthogonality loss term for pre-training and fine-tuning of the expert auto-encoders. We validate the proposed context-aware framework through a number of experiments, where our method achieves a comparable performance to state-of-the-art trackers which cannot run in real-time, while running at a significantly fast speed of over 100 fps.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
visual-object-tracking-on-vot201718TRACA
Expected Average Overlap (EAO): 0.137

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Context-aware Deep Feature Compression for High-speed Visual Tracking | Papers | HyperAI