Command Palette
Search for a command to run...
Ryan Prenger; Rafael Valle; Bryan Catanzaro

Abstract
In this paper we propose WaveGlow: a flow-based network capable of generating high quality speech from mel-spectrograms. WaveGlow combines insights from Glow and WaveNet in order to provide fast, efficient and high-quality audio synthesis, without the need for auto-regression. WaveGlow is implemented using only a single network, trained using only a single cost function: maximizing the likelihood of the training data, which makes the training procedure simple and stable. Our PyTorch implementation produces audio samples at a rate of more than 500 kHz on an NVIDIA V100 GPU. Mean Opinion Scores show that it delivers audio quality as good as the best publicly available WaveNet implementation. All code will be made publicly available online.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| speech-synthesis-on-libritts | WaveGlow | M-STFT: 1.3099 MCD: 2.3591 PESQ: 3.138 Periodicity: 0.1485 V/UV F1: 0.9378 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.