HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

PifPaf: Composite Fields for Human Pose Estimation

Sven Kreiss; Lorenzo Bertoni; Alexandre Alahi

PifPaf: Composite Fields for Human Pose Estimation

Abstract

We propose a new bottom-up method for multi-person 2D human pose estimation that is particularly well suited for urban mobility such as self-driving cars and delivery robots. The new method, PifPaf, uses a Part Intensity Field (PIF) to localize body parts and a Part Association Field (PAF) to associate body parts with each other to form full human poses. Our method outperforms previous methods at low resolution and in crowded, cluttered and occluded scenes thanks to (i) our new composite field PAF encoding fine-grained information and (ii) the choice of Laplace loss for regressions which incorporates a notion of uncertainty. Our architecture is based on a fully convolutional, single-shot, box-free design. We perform on par with the existing state-of-the-art bottom-up method on the standard COCO keypoint task and produce state-of-the-art results on a modified COCO keypoint task for the transportation domain.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
keypoint-detection-on-coco-test-devPifPaf (single-scale)
AP: 66.4
APL: 72.1
APM: 62.6

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp