HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Learning to Prove Theorems via Interacting with Proof Assistants

Kaiyu Yang; Jia Deng

Learning to Prove Theorems via Interacting with Proof Assistants

Abstract

Humans prove theorems by relying on substantial high-level reasoning and problem-specific insights. Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics. However, human experts have to construct proofs manually by entering tactics into the proof assistant. In this paper, we study the problem of using machine learning to automate the interaction with proof assistants. We construct CoqGym, a large-scale dataset and learning environment containing 71K human-written proofs from 123 projects developed with the Coq proof assistant. We develop ASTactic, a deep learning-based model that generates tactics as programs in the form of abstract syntax trees (ASTs). Experiments show that ASTactic trained on CoqGym can generate effective tactics and can be used to prove new theorems not previously provable by automated methods. Code is available at https://github.com/princeton-vl/CoqGym.

Code Repositories

princeton-vl/CoqGym
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
automated-theorem-proving-on-coqgymASTactic
Percentage correct: 12.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp