Command Palette
Search for a command to run...
Qiang Ning; Zhili Feng; Dan Roth

Abstract
Identifying temporal relations between events is an essential step towards natural language understanding. However, the temporal relation between two events in a story depends on, and is often dictated by, relations among other events. Consequently, effectively identifying temporal relations between events is a challenging problem even for human annotators. This paper suggests that it is important to take these dependencies into account while learning to identify these relations and proposes a structured learning approach to address this challenge. As a byproduct, this provides a new perspective on handling missing relations, a known issue that hurts existing methods. As we show, the proposed approach results in significant improvements on the two commonly used data sets for this problem.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| temporal-information-extraction-on-tempeval-3 | Ning et al. | Temporal awareness: 67.2 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.