HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Adversarial Deep Embedded Clustering: on a better trade-off between Feature Randomness and Feature Drift

Nairouz Mrabah Mohamed Bouguessa Riadh Ksantini

Adversarial Deep Embedded Clustering: on a better trade-off between Feature Randomness and Feature Drift

Abstract

Clustering using deep autoencoders has been thoroughly investigated in recent years. Current approaches rely on simultaneously learning embedded features and clustering the data points in the latent space. Although numerous deep clustering approaches outperform the shallow models in achieving favorable results on several high-semantic datasets, a critical weakness of such models has been overlooked. In the absence of concrete supervisory signals, the embedded clustering objective function may distort the latent space by learning from unreliable pseudo-labels. Thus, the network can learn non-representative features, which in turn undermines the discriminative ability, yielding worse pseudo-labels. In order to alleviate the effect of random discriminative features, modern autoencoder-based clustering papers propose to use the reconstruction loss for pretraining and as a regularizer during the clustering phase. Nevertheless, a clustering-reconstruction trade-off can cause the \textit{Feature Drift} phenomena. In this paper, we propose ADEC (Adversarial Deep Embedded Clustering) a novel autoencoder-based clustering model, which addresses a dual problem, namely, \textit{Feature Randomness} and \textit{Feature Drift}, using adversarial training. We empirically demonstrate the suitability of our model on handling these problems using benchmark real datasets. Experimental results validate that our model outperforms state-of-the-art autoencoder-based clustering methods.

Benchmarks

BenchmarkMethodologyMetrics
image-clustering-on-mnist-fullADEC
Accuracy: 0.990
NMI: 0.971

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Adversarial Deep Embedded Clustering: on a better trade-off between Feature Randomness and Feature Drift | Papers | HyperAI