Command Palette
Search for a command to run...
Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images and Recipes with Semantic Consistency and Attention Mechanism
Hao Wang Doyen Sahoo Chenghao Liu Ke Shu Palakorn Achananuparp Ee-peng Lim Steven C. H. Hoi

Abstract
Food retrieval is an important task to perform analysis of food-related information, where we are interested in retrieving relevant information about the queried food item such as ingredients, cooking instructions, etc. In this paper, we investigate cross-modal retrieval between food images and cooking recipes. The goal is to learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another. Two major challenges in addressing this problem are 1) large intra-variance and small inter-variance across cross-modal food data; and 2) difficulties in obtaining discriminative recipe representations. To address these two problems, we propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities. Besides, we exploit a self-attention mechanism to improve the embedding of recipes. We evaluate the performance of the proposed method on the large-scale Recipe1M dataset, and show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| cross-modal-retrieval-on-recipe1m | SCAN | Image-to-text R@1: 54.0 Text-to-image R@1: 54.9 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.