Command Palette
Search for a command to run...
Yonglong Tian Chen Sun Ben Poole Dilip Krishnan Cordelia Schmid Phillip Isola

Abstract
Contrastive learning between multiple views of the data has recently achieved state of the art performance in the field of self-supervised representation learning. Despite its success, the influence of different view choices has been less studied. In this paper, we use theoretical and empirical analysis to better understand the importance of view selection, and argue that we should reduce the mutual information (MI) between views while keeping task-relevant information intact. To verify this hypothesis, we devise unsupervised and semi-supervised frameworks that learn effective views by aiming to reduce their MI. We also consider data augmentation as a way to reduce MI, and show that increasing data augmentation indeed leads to decreasing MI and improves downstream classification accuracy. As a by-product, we achieve a new state-of-the-art accuracy on unsupervised pre-training for ImageNet classification ($73\%$ top-1 linear readout with a ResNet-50). In addition, transferring our models to PASCAL VOC object detection and COCO instance segmentation consistently outperforms supervised pre-training. Code:http://github.com/HobbitLong/PyContrast
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| contrastive-learning-on-imagenet-1k | ResNet50 | ImageNet Top-1 Accuracy: 73 |
| self-supervised-image-classification-on | InfoMin (ResNeXt-152) | Number of Params: 120M Top 1 Accuracy: 75.2% |
| self-supervised-image-classification-on | InfoMin (ResNet-50) | Number of Params: 24M Top 1 Accuracy: 73.0% Top 5 Accuracy: 91.1% |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.