HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Multiple instance learning on deep features for weakly supervised object detection with extreme domain shifts

Nicolas Gonthier Saïd Ladjal Yann Gousseau

Multiple instance learning on deep features for weakly supervised object detection with extreme domain shifts

Abstract

Weakly supervised object detection (WSOD) using only image-level annotations has attracted a growing attention over the past few years. Whereas such task is typically addressed with a domain-specific solution focused on natural images, we show that a simple multiple instance approach applied on pre-trained deep features yields excellent performances on non-photographic datasets, possibly including new classes. The approach does not include any fine-tuning or cross-domain learning and is therefore efficient and possibly applicable to arbitrary datasets and classes. We investigate several flavors of the proposed approach, some including multi-layers perceptron and polyhedral classifiers. Despite its simplicity, our method shows competitive results on a range of publicly available datasets, including paintings (People-Art, IconArt), watercolors, cliparts and comics and allows to quickly learn unseen visual categories.

Code Repositories

ngonthier/Mi_max
tf
Mentioned in GitHub
nicaogr/Mi_max
Official
tf
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp