HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Cross-modal Representation Learning for Zero-shot Action Recognition

Chung-Ching Lin Kevin Lin Linjie Li Lijuan Wang Zicheng Liu

Cross-modal Representation Learning for Zero-shot Action Recognition

Abstract

We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR). Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner. The model design provides a natural mechanism for visual and semantic representations to be learned in a shared knowledge space, whereby it encourages the learned visual embedding to be discriminative and more semantically consistent. In zero-shot inference, we devise a simple semantic transfer scheme that embeds semantic relatedness information between seen and unseen classes to composite unseen visual prototypes. Accordingly, the discriminative features in the visual structure could be preserved and exploited to alleviate the typical zero-shot issues of information loss, semantic gap, and the hubness problem. Under a rigorous zero-shot setting of not pre-training on additional datasets, the experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets. Code will be made available.

Benchmarks

BenchmarkMethodologyMetrics
zero-shot-action-recognition-on-activitynetResT
Top-1 Accuracy: 32.5
zero-shot-action-recognition-on-hmdb51ResT
Top-1 Accuracy: 41.1
zero-shot-action-recognition-on-ucf101ResT
Top-1 Accuracy: 58.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Cross-modal Representation Learning for Zero-shot Action Recognition | Papers | HyperAI