Command Palette
Search for a command to run...
Seungwook Kim Juhong Min Minsu Cho

Abstract
Establishing correspondences between images remains a challenging task, especially under large appearance changes due to different viewpoints or intra-class variations. In this work, we introduce a strong semantic image matching learner, dubbed TransforMatcher, which builds on the success of transformer networks in vision domains. Unlike existing convolution- or attention-based schemes for correspondence, TransforMatcher performs global match-to-match attention for precise match localization and dynamic refinement. To handle a large number of matches in a dense correlation map, we develop a light-weight attention architecture to consider the global match-to-match interactions. We also propose to utilize a multi-channel correlation map for refinement, treating the multi-level scores as features instead of a single score to fully exploit the richer layer-wise semantics. In experiments, TransforMatcher sets a new state of the art on SPair-71k while performing on par with existing SOTA methods on the PF-PASCAL dataset.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| semantic-correspondence-on-spair-71k | TransforMatcher | PCK: 53.7 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.