HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet; Marie-Anne Lachaux; Timothée Lacroix; Baptiste Rozière; Naman Goyal; Eric Hambro; Faisal Azhar; Aurelien Rodriguez; Armand Joulin; Edouard Grave; Guillaume Lample

LLaMA: Open and Efficient Foundation Language Models

Abstract

We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community.

Code Repositories

vcskaushik/LLMzip
pytorch
Mentioned in GitHub
icalk-nlp/educhat
pytorch
Mentioned in GitHub
kayvr/token-hawk
pytorch
Mentioned in GitHub
teelinsan/camoscio
pytorch
Mentioned in GitHub
krafton-ai/korani
pytorch
Mentioned in GitHub
beomi/koalpaca
pytorch
Mentioned in GitHub
chaoyi-wu/finetune_llama
jax
Mentioned in GitHub
freedomintelligence/huatuogpt
pytorch
Mentioned in GitHub
phoebussi/alpaca-cot
pytorch
Mentioned in GitHub
yuanmu97/secure-transformer-inference
pytorch
Mentioned in GitHub
facebookresearch/chai
pytorch
Mentioned in GitHub
kbressem/medalpaca
pytorch
Mentioned in GitHub
xusenlinzy/api-for-open-llm
pytorch
Mentioned in GitHub
facebookresearch/llama
Official
pytorch
Mentioned in GitHub
aethercortex/llama-x
pytorch
Mentioned in GitHub
guinmoon/llmfarm
Mentioned in GitHub
ganjinzero/rrhf
pytorch
Mentioned in GitHub
ohadrubin/rpt
jax
Mentioned in GitHub
squeezeailab/squeezellm
pytorch
Mentioned in GitHub
qwopqwop200/GPTQ-for-LLaMa
pytorch
Mentioned in GitHub
tatsu-lab/stanford_alpaca
pytorch
Mentioned in GitHub
stanfordbdhg/llama.cpp
Mentioned in GitHub
replicate/cog_stanford_alpaca
pytorch
Mentioned in GitHub
zihanzhaosjtu/librisqa
Mentioned in GitHub
huggingface/transformers
pytorch
Mentioned in GitHub
ggerganov/llama.cpp
pytorch
Mentioned in GitHub
ggml-org/llama.cpp
pytorch
Mentioned in GitHub
aozhongzhang/magr
pytorch
Mentioned in GitHub
fsoft-ai4code/codecapybara
pytorch
Mentioned in GitHub
young-geng/easylm
jax
Mentioned in GitHub
grantslatton/llama.cpp
Mentioned in GitHub
chaoyi-wu/pmc-llama
pytorch
Mentioned in GitHub
ecolab-postech/owq
pytorch
Mentioned in GitHub
batsresearch/alfred
pytorch
Mentioned in GitHub
llamafamily/llama-chinese
pytorch
Mentioned in GitHub
ntunlplab/traditional-chinese-alpaca
pytorch
Mentioned in GitHub
hamishivi/easylm
jax
Mentioned in GitHub
flagalpha/llama2-chinese
pytorch
Mentioned in GitHub
longhao-chen/aicas2024
pytorch
Mentioned in GitHub
fajri91/indommlu
pytorch
Mentioned in GitHub
ofa-sys/expertllama
pytorch
Mentioned in GitHub
ecnu-icalk/educhat
pytorch
Mentioned in GitHub
greenbitai/low_bit_llama
pytorch
Mentioned in GitHub
facico/chinese-vicuna
pytorch
Mentioned in GitHub
xvyaward/owq
pytorch
Mentioned in GitHub
xiaoman-zhang/PMC-VQA
pytorch
Mentioned in GitHub
xzhang97666/alpacare
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
arithmetic-reasoning-on-gsm8kLLaMA 13B
Accuracy: 17.8
Parameters (Billion): 13
arithmetic-reasoning-on-gsm8kLLaMA 33B-maj1@k
Accuracy: 53.1
Parameters (Billion): 33
arithmetic-reasoning-on-gsm8kLLaMA 7B
Accuracy: 11.0
Parameters (Billion): 7
arithmetic-reasoning-on-gsm8kLLaMA 33B
Accuracy: 35.6
Parameters (Billion): 33
arithmetic-reasoning-on-gsm8kLLaMA 7B (maj1@k)
Accuracy: 18.1
Parameters (Billion): 7
arithmetic-reasoning-on-gsm8kLLaMA 65B
Accuracy: 50.9
Parameters (Billion): 65
arithmetic-reasoning-on-gsm8kLLaMA 13B-maj1@k
Accuracy: 29.3
Parameters (Billion): 13
arithmetic-reasoning-on-gsm8kLLaMA 65B-maj1@k
Accuracy: 69.7
Parameters (Billion): 65
code-generation-on-mbppLLaMA 33B (0-shot)
Accuracy: 30.2
code-generation-on-mbppLLaMA 13B (0-shot)
Accuracy: 22
code-generation-on-mbppLLaMA 65B (0-shot)
Accuracy: 37.7
code-generation-on-mbppLLaMA 7B (0-shot)
Accuracy: 17.7
common-sense-reasoning-on-arc-challengeLLaMA 65B (zero-shot)
Accuracy: 56.0
common-sense-reasoning-on-arc-challengeLLaMA 7B (zero-shot)
Accuracy: 47.6
common-sense-reasoning-on-arc-challengeLLaMA 13B (zero-shot)
Accuracy: 52.7
common-sense-reasoning-on-arc-challengeLLaMA 33B (zero-shot)
Accuracy: 57.8
common-sense-reasoning-on-arc-easyLLaMA 13B (0-shot)
Accuracy: 74.8
common-sense-reasoning-on-arc-easyLLaMA 7B (0-shot)
Accuracy: 72.8
common-sense-reasoning-on-arc-easyLLaMA 33B (0-shot)
Accuracy: 80.0
common-sense-reasoning-on-arc-easyLLaMA 65B (0-shot)
Accuracy: 78.9
common-sense-reasoning-on-winograndeLLaMA 13B (0-shot)
Accuracy: 73.0
common-sense-reasoning-on-winograndeLLaMA 33B (0-shot)
Accuracy: 76.0
common-sense-reasoning-on-winograndeLLaMA 7B (0-shot)
Accuracy: 70.1
common-sense-reasoning-on-winograndeLLaMA 65B (0-shot)
Accuracy: 77.0
few-shot-learning-on-medconceptsqameta-llama/Meta-Llama-3-8B-Instruct
Accuracy: 25.653
math-word-problem-solving-on-mathLLaMA 13B
Accuracy: 3.9
Parameters (Billions): 13
math-word-problem-solving-on-mathLLaMA 13B-maj1@k
Accuracy: 8.8
Parameters (Billions): 13
math-word-problem-solving-on-mathLLaMA 7B
Accuracy: 2.9
Parameters (Billions): 7
math-word-problem-solving-on-mathLLaMA 7B-maj1@k
Accuracy: 6.9
Parameters (Billions): 7
math-word-problem-solving-on-mathLLaMA 65B
Accuracy: 10.6
Parameters (Billions): 65
math-word-problem-solving-on-mathLLaMA 33B
Accuracy: 7.1
Parameters (Billions): 33
math-word-problem-solving-on-mathLLaMA 65B (maj1@k)
Accuracy: 20.5
Parameters (Billions): 65
math-word-problem-solving-on-mathLLaMA 33B-maj1@k
Accuracy: 15.2
Parameters (Billions): 33
multi-task-language-understanding-on-mmluLLaMA 65B (fine-tuned)
Average (%): 68.9
multi-task-language-understanding-on-mmluLLaMA 65B (5-shot)
Average (%): 63.4
multi-task-language-understanding-on-mmluLLaMA 33B (5-shot)
Average (%): 57.8
question-answering-on-boolqLLaMA 7B (zero-shot)
Accuracy: 76.5
question-answering-on-boolqLLaMA 65B (0-shot)
Accuracy: 85.3
question-answering-on-boolqLLaMA 33B (0-shot)
Accuracy: 83.1
question-answering-on-boolqLLaMA 13B (zero-shot)
Accuracy: 78.1
question-answering-on-natural-questionsLLaMA 65B (few-shot, k=5)
EM: 35.0
question-answering-on-natural-questionsLLaMA 65B (few-shot, k=64)
EM: 39.9
question-answering-on-natural-questionsLLaMA 33B (zero-shot)
EM: 24.9
question-answering-on-natural-questionsLLaMA 65B (one-shot)
EM: 31.0
question-answering-on-obqaLLaMA 7B (zero-shot)
Accuracy: 57.2
question-answering-on-obqaLLaMA 13B (zero-shot)
Accuracy: 56.4
question-answering-on-obqaLLaMA 65B (zero-shot)
Accuracy: 60.2
question-answering-on-obqaLLaMA 33B (zero-shot)
Accuracy: 58.6
question-answering-on-piqaLLaMA 33B (0-shot)
Accuracy: 82.3
question-answering-on-piqaLLaMA 7B (0-shot)
Accuracy: 79.8
question-answering-on-piqaLLaMA 13B (0-shot)
Accuracy: 80.1
question-answering-on-piqaLLaMA 65B (0-shot)
Accuracy: 82.8
question-answering-on-social-iqaLLaMA 13B (zero-shot)
Accuracy: 50.4
question-answering-on-social-iqaLLaMA 7B (zero-shot)
Accuracy: 48.9
question-answering-on-social-iqaLLaMA 65B (zero-shot)
Accuracy: 52.3
question-answering-on-social-iqaLLaMA 33B (zero-shot)
Accuracy: 50.4
question-answering-on-timequestionsLlama3
P@1: 17.8
question-answering-on-triviaqaLLaMA 65B (few-shot, k=64)
EM: 73.0
question-answering-on-triviaqaLLaMA 65B (one-shot)
EM: 71.6
question-answering-on-triviaqaLLaMA 65B (few-shot, k=5)
EM: 72.6
question-answering-on-triviaqaLLaMA 65B (zero-shot)
EM: 68.2
question-answering-on-truthfulqaLLaMA 65B
% info: 53
% true: 57
question-answering-on-truthfulqaLLaMA 7B
% info: 29
% true: 33
question-answering-on-truthfulqaLLaMA 13B
% info: 41
% true: 47
question-answering-on-truthfulqaLLaMA 33B
% info: 48
% true: 52
reading-comprehension-on-raceLLaMA 33B (zero-shot)
Accuracy (High): 48.3
Accuracy (Middle): 64.1
reading-comprehension-on-raceLLaMA 65B (zero-shot)
Accuracy (High): 51.6
Accuracy (Middle): 67.9
reading-comprehension-on-raceLLaMA 7B (zero-shot)
Accuracy (High): 46.9
Accuracy (Middle): 61.1
reading-comprehension-on-raceLLaMA 13B (zero-shot)
Accuracy (High): 47.2
Accuracy (Middle): 61.6
stereotypical-bias-analysis-on-crows-pairsLLaMA 65B
Age: 70.1
Disability: 66.7
Gender: 70.6
Nationality: 64.2
Overall: 66.6
Physical Appearance: 77.8
Race/Color: 57.0
Religion: 70.6
Sexual Orientation: 81.0
Socioeconomic status: 71.5
zero-shot-learning-on-medconceptsqameta-llama/Meta-Llama-3-8B-Instruct
Accuracy: 25.840

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp