HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction

Xiao Wang; Weikang Zhou; Can Zu; Han Xia; Tianze Chen; Yuansen Zhang; Rui Zheng; Junjie Ye; Qi Zhang; Tao Gui; Jihua Kang; Jingsheng Yang; Siyuan Li; Chunsai Du

InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction

Abstract

Large language models have unlocked strong multi-task capabilities from reading instructive prompts. However, recent studies have shown that existing large models still have difficulty with information extraction tasks. For example, gpt-3.5-turbo achieved an F1 score of 18.22 on the Ontonotes dataset, which is significantly lower than the state-of-the-art performance. In this paper, we propose InstructUIE, a unified information extraction framework based on instruction tuning, which can uniformly model various information extraction tasks and capture the inter-task dependency. To validate the proposed method, we introduce IE INSTRUCTIONS, a benchmark of 32 diverse information extraction datasets in a unified text-to-text format with expert-written instructions. Experimental results demonstrate that our method achieves comparable performance to Bert in supervised settings and significantly outperforms the state-of-the-art and gpt3.5 in zero-shot settings.

Code Repositories

beyonderxx/instructuie
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
zero-shot-named-entity-recognition-ner-on-1InstructUIE
AI: 49.0
Literature: 47.2
Music: 53.2
Politics: 48.2
Science: 49.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp