HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Towards Redundancy-Free Sub-networks in Continual Learning

Cheng Chen Jingkuan Song LianLi Gao Heng Tao Shen

Towards Redundancy-Free Sub-networks in Continual Learning

Abstract

Catastrophic Forgetting (CF) is a prominent issue in continual learning. Parameter isolation addresses this challenge by masking a sub-network for each task to mitigate interference with old tasks. However, these sub-networks are constructed relying on weight magnitude, which does not necessarily correspond to the importance of weights, resulting in maintaining unimportant weights and constructing redundant sub-networks. To overcome this limitation, inspired by information bottleneck, which removes redundancy between adjacent network layers, we propose \textbf{\underline{I}nformation \underline{B}ottleneck \underline{M}asked sub-network (IBM)} to eliminate redundancy within sub-networks. Specifically, IBM accumulates valuable information into essential weights to construct redundancy-free sub-networks, not only effectively mitigating CF by freezing the sub-networks but also facilitating new tasks training through the transfer of valuable knowledge. Additionally, IBM decomposes hidden representations to automate the construction process and make it flexible. Extensive experiments demonstrate that IBM consistently outperforms state-of-the-art methods. Notably, IBM surpasses the state-of-the-art parameter isolation method with a 70\% reduction in the number of parameters within sub-networks and an 80\% decrease in training time.

Code Repositories

zackschen/IBM-Net
Official
pytorch

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp