Command Palette
Search for a command to run...
Steiner Aaron ; Peeters Ralph ; Bizer Christian

Abstract
Generative large language models (LLMs) are a promising alternative topre-trained language models for entity matching due to their high zero-shotperformance and ability to generalize to unseen entities. Existing research onusing LLMs for entity matching has focused on prompt engineering and in-contextlearning. This paper explores the potential of fine-tuning LLMs for entitymatching. We analyze fine-tuning along two dimensions: 1) the representation oftraining examples, where we experiment with adding different types ofLLM-generated explanations to the training set, and 2) the selection andgeneration of training examples using LLMs. In addition to the matchingperformance on the source dataset, we investigate how fine-tuning affects themodels ability to generalize to other in-domain datasets as well as acrosstopical domains. Our experiments show that fine-tuning significantly improvesthe performance of the smaller models while the results for the larger modelsare mixed. Fine-tuning also improves the generalization to in-domain datasetswhile hurting cross-domain transfer. We show that adding structuredexplanations to the training set has a positive impact on the performance ofthree out of four LLMs, while the proposed example selection and generationmethods, only improve the performance of Llama 3.1 8B while decreasing theperformance of GPT-4o-mini.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| entity-resolution-on-abt-buy | Meta-Llama-3.1-8B-Instruct | F1 (%): 56.57 |
| entity-resolution-on-abt-buy | Meta-Llama-3.1-70B-Instruct | F1 (%): 79.12 |
| entity-resolution-on-abt-buy | Meta-Llama-3.1-8B-Instruct_fine_tuned | F1 (%): 87.34 |
| entity-resolution-on-abt-buy | gpt-4o-2024-08-06 | F1 (%): 92.20 |
| entity-resolution-on-abt-buy | gpt-4o-mini-2024-07-18_fine_tuned | F1 (%): 94.09 |
| entity-resolution-on-abt-buy | gpt-4o-mini-2024-07-18 | F1 (%): 87.68 |
| entity-resolution-on-amazon-google | gpt-4o-mini-2024-07-18 | F1 (%): 59.20 |
| entity-resolution-on-amazon-google | gpt-4o-mini-2024-07-18_fine_tuned | F1 (%): 80.25 |
| entity-resolution-on-amazon-google | Meta-Llama-3.1-70B-Instruct | F1 (%): 51.44 |
| entity-resolution-on-amazon-google | Meta-Llama-3.1-8B-Instruct_fine_tuned | F1 (%): 50.00 |
| entity-resolution-on-amazon-google | Meta-Llama-3.1-8B-Instruct | F1 (%): 49.16 |
| entity-resolution-on-amazon-google | gpt-4o-2024-08-06 | F1 (%): 63.45 |
| entity-resolution-on-wdc-products | gpt-4o-2024-08-06_fine_tuned_wdc_small | F1 (%): 87.07 |
| entity-resolution-on-wdc-products-80-cc-seen | gpt-4o-mini-2024-07-18 | F1 (%): 81.61 |
| entity-resolution-on-wdc-products-80-cc-seen | gpt-4o-2024-08-06_fine_tuned_wdc_small | F1 (%): 87.10 |
| entity-resolution-on-wdc-products-80-cc-seen | Llama3.1_8B_error-based_example_selection | F1 (%): 74.37 |
| entity-resolution-on-wdc-products-80-cc-seen | Llama3.1_70B_structured_explanations | F1 (%): 76.70 |
| entity-resolution-on-wdc-products-80-cc-seen | Llama3.1_70B | F1 (%): 75.20 |
| entity-resolution-on-wdc-products-80-cc-seen | Llama3.1_8B | F1 (%): 53.36 |
| entity-resolution-on-wdc-products-80-cc-seen | gpt-4o-mini-2024-07-18_structured_explanations | F1 (%): 84.38 |
| entity-resolution-on-wdc-products-80-cc-seen | Llama3.1_8B_structured_explanations | F1 (%): 74.13 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.