HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Attention Masks Help Adversarial Attacks to Bypass Safety Detectors

Yunfan Shi

Attention Masks Help Adversarial Attacks to Bypass Safety Detectors

Abstract

Despite recent research advancements in adversarial attack methods, current approaches against XAI monitors are still discoverable and slower. In this paper, we present an adaptive framework for attention mask generation to enable stealthy, explainable and efficient PGD image classification adversarial attack under XAI monitors. Specifically, we utilize mutation XAI mixture and multitask self-supervised X-UNet for attention mask generation to guide PGD attack. Experiments on MNIST (MLP), CIFAR-10 (AlexNet) have shown that our system can outperform benchmark PGD, Sparsefool and SOTA SINIFGSM in balancing among stealth, efficiency and explainability which is crucial for effectively fooling SOTA defense protected classifiers.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
adversarial-attack-on-cifar-10XU-Net
Robust Accuracy: 1%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp