HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Deep Learning Face Representation from Predicting 10,000 Classes

{Xiaoou Tang Xiaogang Wang Yi Sun}

Deep Learning Face Representation from Predicting 10,000 Classes

Abstract

This paper proposes to learn a set of high-level featurerepresentations through deep learning, referred to as Deephidden IDentity features (DeepID), for face verification.We argue that DeepID can be effectively learned throughchallenging multi-class face identification tasks, whilst theycan be generalized to other tasks (such as verification) andnew identities unseen in the training set. Moreover, thegeneralization capability of DeepID increases as more faceclasses are to be predicted at training. DeepID featuresare taken from the last hidden layer neuron activations ofdeep convolutional networks (ConvNets). When learnedas classifiers to recognize about 10, 000 face identities inthe training set and configured to keep reducing the neuronnumbers along the feature extraction hierarchy, these deepConvNets gradually form compact identity-related featuresin the top layers with only a small number of hiddenneurons. The proposed features are extracted from variousface regions to form complementary and over-completerepresentations. Any state-of-the-art classifiers can belearned based on these high-level representations for faceverification. 97.45% verification accuracy on LFW isachieved with only weakly aligned faces

Benchmarks

BenchmarkMethodologyMetrics
face-verification-on-labeled-faces-in-theDeepID
Accuracy: 97.05%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Deep Learning Face Representation from Predicting 10,000 Classes | Papers | HyperAI