Command Palette
Search for a command to run...
Data-to-Text Generation
Data-to-Text Generation is a classic problem in the field of natural language processing, aiming to convert structured data into fluent and accurate natural language text. This task not only involves selecting appropriate content from the input data for description but also requires the use of surface realization techniques to generate natural and coherent expressions to meet the needs of different application scenarios, such as automatic report generation, weather forecasts, and news summaries.
WebNLG
Control Prefixes (A1, T5-large)
E2E NLG Challenge
S_1^R
WebNLG Full
Cleaned E2E NLG Challenge
DataTuner_FC
RotoWire (Relation Generation)
Macro
RotoWire
HierarchicalEncoder + NR + IR
XAlign
ToTTo
T5-3B
Rotowire (Content Selection)
Hierarchical Transformer Encoder + conditional copy
RotoWire (Content Ordering)
Hierarchical Transformer Encoder + conditional copy
MULTIWOZ 2.1
T5-Base
MLB Dataset
Macro
MLB Dataset (Relation Generation)
Macro
MLB Dataset (Content Ordering)
Macro
Czech Restaurant NLG
MLB Dataset (Content Selection)
DART
T5-B Baseline
WebNLG ru
ViGGO
DataTuner_FC
WebNLG en
E2E
self-mem + new data (random)
SR11Deep
Transition based Deep Input Linearization
AMR3.0
StructAdapt
WikiOFGraph
T5-large
GenWiki
Wikipedia Person and Animal Dataset