HyperAI

Few Shot Image Classification On Cifar Fs 5 1

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Model Name
Accuracy
Paper TitleRepository
EASY 2xResNet12 1/√2 (transductive)90.2--
PT+MAP+SF+SOT (transductive)92.83--
Adaptive Subspace Network87.3--
BAVARDAGE90.63--
Multi-Task Learning84.1--
RCN - Conv4-6477.63--
MTUNet+ResNet-1880.16--
P>M>F (P=DINO-ViT-base, M=ProtoNet)92.2--
HCTransformers90.50--
MetaQDA88.79--
Invariance-Equivariance89.74--
FewTURE88.90--
CAML [Laion-2b]93.5--
MetaOptNet-SVM-trainval85--
EASY 3xResNet12 (transductive)90.47--
ICI84.32--
LST+MAP90.73--
EASY 3xResNet12 (inductive)89.0--
MTUNet+WRN82.93--
S2M2R87.47--
0 of 39 row(s) selected.