HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Image Clustering
Image Clustering On Tiny Imagenet
Image Clustering On Tiny Imagenet
Metrics
Accuracy
NMI
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy
NMI
Paper Title
Repository
DAC
0.066
0.190
Deep Adaptive Image Clustering
MMDC
0.119
0.274
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
-
GAN
0.041
0.135
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
PRO-DSC
0.698
0.805
Exploring a Principled Framework For Deep Subspace Clustering
VAE
0.036
0.113
Auto-Encoding Variational Bayes
-
SPICE
0.305
0.449
SPICE: Semantic Pseudo-labeling for Image Clustering
-
ITAE
0.6823
0.8178
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
-
DEC
0.037
0.115
Unsupervised Deep Embedding for Clustering Analysis
-
CC
0.14
0.34
Contrastive Clustering
-
C3
0.141
0.335
C3: Cross-instance guided Contrastive Clustering
-
IMC-SwAV (Best)
0.282
0.526
Information Maximization Clustering via Multi-View Self-Labelling
-
DCCM
0.108
0.224
Deep Comprehensive Correlation Mining for Image Clustering
-
JULE
0.033
0.102
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
IMC-SwAV (Avg+-)
0.279
0.485
Information Maximization Clustering via Multi-View Self-Labelling
-
0 of 14 row(s) selected.
Previous
Next
Image Clustering On Tiny Imagenet | SOTA | HyperAI