HyperAIHyperAI

Image Generation On Imagenet 256X256

Metrics

FID

Results

Performance results of various models on this benchmark

Model Name
FID
Paper TitleRepository
simple diffusion (U-Net)3.71Simple diffusion: End-to-end diffusion for high resolution images-
RDM1.99Relay Diffusion: Unifying diffusion process across resolutions for image synthesis-
Patch Diffusion2.74--
RAR-L, autoregressive1.70Randomized Autoregressive Visual Generation-
RAR-B, autoregressive1.95Randomized Autoregressive Visual Generation-
RAR-XL, autoregressive1.50Randomized Autoregressive Visual Generation-
CDM4.88Cascaded Diffusion Models for High Fidelity Image Generation-
MDT1.79MDTv2: Masked Diffusion Transformer is a Strong Image Synthesizer-
TiTok-S-1281.97An Image is Worth 32 Tokens for Reconstruction and Generation-
BIGRoC-pl (Guided-Diffusion)3.69BIGRoC: Boosting Image Generation via a Robust Classifier-
ADM-G++ (Recall)4.45Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models-
GigaGAN3.45Scaling up GANs for Text-to-Image Synthesis-
MaskGIT6.18MaskGIT: Masked Generative Image Transformer-
SiT-XL/2 + REPA (with the guidance interval)1.42Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think-
Discriminator Guidance1.83Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models-
SiT-XL/2 + MG1.34Diffusion Models without Classifier-free Guidance-
xAR-L1.28Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation-
ADM-G + EDS (ED-DPM, classifier_scale=0.75)3.96Entropy-driven Sampling and Training Scheme for Conditional Diffusion Generation-
StyleGAN-XL2.30StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets-
RQ-Transformer3.83Autoregressive Image Generation using Residual Quantization-
0 of 79 row(s) selected.
Image Generation On Imagenet 256X256 | SOTA | HyperAI