HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Lane Detection
Lane Detection On Curvelanes
Lane Detection On Curvelanes
Metrics
F1 score
GFLOPs
Precision
Recall
Results
Performance results of various models on this benchmark
Columns
Model Name
F1 score
GFLOPs
Precision
Recall
Paper Title
Repository
CANet-S
86.57
13.1
91.37
82.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-M
87.19
22.6
91.53
83.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
Enet-SAD
50.31
3.9
63.6
41.6
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CondLaneNet-L(ResNet-101)
86.10
44.9
88.98
83.41
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
-
CANet-L(ResNet101)
-
45.7
-
84.36
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CLRNet-DLA34
86.1
18.4
91.4
81.39
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
-
SCNN
65.02
328.4
76.13
56.74
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CANet-L
87.87
-
91.69
-
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CurveLane-S
81.12
7.4
93.58
71.59
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CondLSTR (ResNet-101)
88.47
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CondLSTR (ResNet-18)
87.99
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CLRerNet-DLA34
86.47
18.4
91.66
81.83
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
-
PointLaneNet
78.47
14.8
86.33
72.91
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CurveLane-M
81.8
11.6
93.49
72.71
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CondLaneNet-M(ResNet-34)
85.92
19.7
88.29
83.68
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
-
CondLSTR (ResNet-34)
88.23
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CurveLane-L
82.29
20.7
91.11
75.03
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
-
CondLaneNet-S(ResNet-18)
85.09
10.3
87.75
82.58
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
-
0 of 18 row(s) selected.
Previous
Next
Lane Detection On Curvelanes | SOTA | HyperAI