HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Lane Detection
Lane Detection On Tusimple
Lane Detection On Tusimple
Metrics
Accuracy
F1 score
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy
F1 score
Paper Title
Repository
LaneATT (ResNet-18)
95.57%
96.71
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
-
CLRNet(ResNet-101)
-
97.62
CLRNet: Cross Layer Refinement Network for Lane Detection
-
BézierLaneNet (ResNet-34)
95.65%
-
Rethinking Efficient Lane Detection via Curve Modeling
-
EL-GAN
96.40%
96.26
EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
-
BézierLaneNet (ResNet-18)
95.41%
-
Rethinking Efficient Lane Detection via Curve Modeling
-
ENet-Label
96.29%
95.23
Agnostic Lane Detection
-
LaneATT (ResNet-122)
96.10%
96.06
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
-
Pairwise pixel supervision + FCN
96.50%
94.31
Learning to Cluster for Proposal-Free Instance Segmentation
-
Eigenlanes (ResNet-18)
95.62%
-
Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
-
R-34-E2E
96.22%
96.58
End-to-End Lane Marker Detection via Row-wise Classification
-
CondLaneNet-M(ResNet-34)
95.37%
96.98
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
-
CANet-L(ResNet101)
96.76%
97.77
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
LaneAF
95.64%
96.49
LaneAF: Robust Multi-Lane Detection with Affinity Fields
-
SCNN_UNet_Attention_PL*
98.38
-
Robust Lane Detection through Self Pre-training with Masked Sequential Autoencoders and Fine-tuning with Customized PolyLoss
-
FOLOLane(ERFNet)
96.92
-
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
-
End-to-end ERFNet
95.24%
90.82
Lane Detection and Classification using Cascaded CNNs
-
ERFNet
94.5%
-
-
-
GANet(ResNet-18)
-
97.68
A Keypoint-based Global Association Network for Lane Detection
-
CLLD
96.82
-
Contrastive Learning for Lane Detection via cross-similarity
-
CANet-S
96.56%
97.51
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
0 of 41 row(s) selected.
Previous
Next
Lane Detection On Tusimple | SOTA | HyperAI