HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Medical Image Segmentation
Medical Image Segmentation On Cvc Colondb
Medical Image Segmentation On Cvc Colondb
Metrics
mIoU
mean Dice
Results
Performance results of various models on this benchmark
Columns
Model Name
mIoU
mean Dice
Paper Title
Repository
PVT-GCASCADE
0.7460
0.8261
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
TransFuse-L
0.676
0.744
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
-
EMCAD
-
0.9231
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
-
UACANet-S
0.704
0.783
UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation
-
DuAT
0.737
0.819
DuAT: Dual-Aggregation Transformer Network for Medical Image Segmentation
-
SAM-EG
0.689
0.774
SAM-EG: Segment Anything Model with Egde Guidance framework for efficient Polyp Segmentation
-
ProMISe
0.789
0.874
ProMISe: Promptable Medical Image Segmentation using SAM
-
COMMA (Res2Net-50)
0.689
0.754
COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation
-
KDAS
0.679
0.759
KDAS: Knowledge Distillation via Attention Supervision Framework for Polyp Segmentation
-
UACANet-L
0.678
0.751
UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation
-
RAPUNet
0.9096
0.9526
MetaFormer and CNN Hybrid Model for Polyp Image Segmentation
Meta-Polyp
0.79
0.867
Meta-Polyp: a baseline for efficient Polyp segmentation
-
PVT-CASCADE
0.7453
0.8254
Medical Image Segmentation via Cascaded Attention Decoding
HarDNet-MSEG
0.660
0.731
HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS
-
TransFuse-S
0.696
0.773
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
-
ResUNet++ + TTA
0.8466
0.8474
A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation
-
ESFPNet-L
0.730
0.811
ESFPNet: efficient deep learning architecture for real-time lesion segmentation in autofluorescence bronchoscopic video
-
SSFormer-L
0.721
0.802
Stepwise Feature Fusion: Local Guides Global
-
Polyp-PVT
0.727
0.808
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers
-
CaraNet
0.689
0.773
CaraNet: Context Axial Reverse Attention Network for Segmentation of Small Medical Objects
-
0 of 23 row(s) selected.
Previous
Next
Medical Image Segmentation On Cvc Colondb | SOTA | HyperAI