Node Classification On Cornell 60 20 20
Metrics
1:1 Accuracy
Results
Performance results of various models on this benchmark
Model Name | 1:1 Accuracy | Paper Title | Repository |
---|---|---|---|
HH-GAT | 72.7 ± 4.26 | - | - |
ACM-SGC-2 | 93.77 ± 2.17 | - | - |
GAT | 76.00 ± 1.01 | - | - |
GraphSAGE | 71.41 ± 1.24 | - | - |
Snowball-3 | 82.95 ± 2.1 | - | - |
ACM-GCN | 94.75 ± 3.8 | - | - |
GCN | 82.46 ± 3.11 | - | - |
HH-GraphSAGE | 74.6 ± 6.06 | - | - |
GCNII* | 90.49 ± 4.45 | - | - |
ACM-GCN++ | 93.93 ± 1.05 | - | - |
ACMII-GCN | 95.9 ± 1.83 | - | - |
ACM-GCN+ | 94.92 ± 2.79 | - | - |
ACM-Snowball-2 | 95.08 ± 3.11 | - | - |
ACM-GCNII* | 93.44 ± 2.74 | - | - |
MLP-2 | 91.30 ± 0.70 | - | - |
SGC-1 | 70.98 ± 8.39 | - | - |
FAGCN | 88.03 ± 5.6 | - | - |
SGC-2 | 72.62 ± 9.92 | - | - |
H2GCN | 86.23 ± 4.71 | - | - |
Geom-GCN* | 60.81 | - | - |
0 of 36 row(s) selected.