Node Classification On Flickr
Metrics
Accuracy
Results
Performance results of various models on this benchmark
Model Name | Accuracy | Paper Title | Repository |
---|---|---|---|
GCN+GAugM (Zhao et al., 2021) | 0.682 | - | - |
GCN_cheby (Kipf and Welling, 2017) | 0.479 | - | - |
GraphSAGE (Hamilton et al., [2017a]) | 0.641 | - | - |
EnGCN (Duan et al., 2022) | 0.562 | - | - |
DEMO-Net(weight) | 0.656 ± 0.000 | - | - |
GCN (Kipf and Welling, 2017) | 0.546 | - | - |
GAT (Velickovic et al., 2018) | 0.359 | - | - |
Intersection (Li et al., 2018) | 0.557 | - | - |
0 of 8 row(s) selected.