HyperAI

Node Classification On Texas

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Model Name
Accuracy
Paper TitleRepository
2-HiGCN92.45±0.73--
HLP Concat87.57 ± 5.44--
MGNN + Hetero-S (8 layers)93.09--
Diag-NSD85.67 ± 6.95--
GGCN84.86 ± 4.55--
MixHop77.84 ± 7.73--
ACM-GCN+88.38 ± 3.64--
UniG-Encoder85.40±5.3--
ACM-SGC-281.89 ± 4.53--
SADE-GCN86.49±5.12--
Geom-GCN-S59.73--
GloGNN++84.05±4.90--
Gen-NSD82.97 ± 5.13--
LINKX+CausalMP57.36±0.60--
IIE-GNN85.84±4.23--
M2M-GNN89.19 ± 4.5--
DeltaGNN constant74.05±3.08--
LINKX74.60 ± 8.37--
NLMLP 85.4 ± 3.8--
FSGNN87.30 ± 5.55--
0 of 62 row(s) selected.