HyperAI

Node Classification On Wisconsin

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Model Name
Accuracy
Paper TitleRepository
HDP88.82 ± 3.40--
FAGCN79.61 ± 1.58--
Gen-NSD89.21 ± 3.84--
H2GCN-RARE (λ=1.0)90.00±2.97--
ACM-GCN+88.43 ± 2.39--
LHS88.32±2.3--
H2GCN-184.31 ± 3.70--
GloGNN87.06±3.53--
GloGNN++88.04±3.22--
M2M-GNN89.01 ± 4.1--
NLGAT 56.9 ± 7.3--
ACM-SGC-286.47 ± 3.77--
GCNH---
DJ-GNN---
ACM-SGC-186.47 ± 3.77--
TE-GCNN87.45 ± 3.70--
Geom-GCN-I58.24--
FSGNN (3-hop)88.43±3.22--
H2GCN + UniGAP87.73 ± 4.8--
LINKX75.49 ± 5.72--
0 of 63 row(s) selected.