HyperAIHyperAI

Question Answering On Squad11

Metrics

EM
F1

Results

Performance results of various models on this benchmark

Model Name
EM
F1
Paper TitleRepository
SAN (ensemble model)79.60886.496Stochastic Answer Networks for Machine Reading Comprehension-
S^3-Net (single model)71.90881.023--
RQA (single model)55.82765.467Harvesting and Refining Question-Answer Pairs for Unsupervised QA-
PQMN (single model)68.33177.783--
BERT - 3 Layers77.785.8Information Theoretic Representation Distillation-
RuBERT-84.6Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language-
BERT-uncased (single model)84.92691.932--
{ANNA} (single model)90.62295.719--
BISAN (single model)85.31491.756--
Conductor-net (single model)74.40582.742Phase Conductor on Multi-layered Attentions for Machine Comprehension-
KACTEIL-MRC(GF-Net+) (single model)78.66485.780--
BERT-Large 32k batch size with AdamW-91.58A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes-
FusionNet (single model)75.96883.900FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension-
WD (single model)84.40290.561--
DyREX-91.01DyREx: Dynamic Query Representation for Extractive Question Answering-
WAHnGREA0.0000.000--
S^3-Net (ensemble)74.12182.342--
RaSoR + TR (single model)75.78983.261Contextualized Word Representations for Reading Comprehension-
RQA+IDR (single model)61.14571.389Harvesting and Refining Question-Answer Pairs for Unsupervised QA-
MEMEN (single model)78.23485.344MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension-
0 of 213 row(s) selected.
Question Answering On Squad11 | SOTA | HyperAI