HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Semantic Segmentation
Semantic Segmentation On Isprs Potsdam
Semantic Segmentation On Isprs Potsdam
Metrics
Mean F1
Mean IoU
Overall Accuracy
Results
Performance results of various models on this benchmark
Columns
Model Name
Mean F1
Mean IoU
Overall Accuracy
Paper Title
Repository
AerialFormer-B
94.1
89.1
93.9
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
-
LSKNet-S
93.1
87.2
92.0
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
-
PSPNet (SAP)
-
74.3
88.56
Stochastic Subsampling With Average Pooling
-
ViT-B + RVSA-UperNet
-
-
90.77
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
-
EfficientUNets and Transformers
93.7
-
91.8
Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers
-
BANet
-
-
91.06
Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
-
FT-UNetFormer
93.3
87.5
92.0
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
-
RSP-Swin-T-UperNet
-
-
90.78
An Empirical Study of Remote Sensing Pretraining
-
MANet
-
-
91.318
Multiattention network for semantic segmentation of fine-resolution remote sensing images
-
U-Net (ConvFormer-M36)
-
89.45
-
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
-
ViTAE-B + RVSA -UperNet
-
-
91.22
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
-
ViT-G12X4
92.12
-
92.58
A Billion-scale Foundation Model for Remote Sensing Images
-
RSP-ResNet-50-UperNet
-
-
90.61
An Empirical Study of Remote Sensing Pretraining
-
RSP-ViTAEv2-S-UperNet
-
-
91.21
An Empirical Study of Remote Sensing Pretraining
-
ABCNet
-
-
91.3
ABCNet: Attentive Bilateral Contextual Network for Efficient Semantic Segmentation of Fine-Resolution Remote Sensing Images
-
IMP-ViTAEv2-S-UperNet
-
-
91.6
An Empirical Study of Remote Sensing Pretraining
-
UNetFormer
92.8
86.8
91.3
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
-
DC-Swin
93.25
87.56
92.0
A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images
-
SFA-Net
93.5
-
-
SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation
0 of 19 row(s) selected.
Previous
Next