HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Semantic Segmentation
Semantic Segmentation On Vaihingen
Semantic Segmentation On Vaihingen
Metrics
mIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
mIoU
Paper Title
Repository
CMX
82.87
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
-
SegFormer-B0
75.57
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
-
SA-Gate
81.03
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
-
HRNet-48
76.75
Deep High-Resolution Representation Learning for Visual Recognition
-
SegFormer-B2
76.69
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
-
UnetFormer
77.24
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
-
PSPNet
76.79
Pyramid Scene Parsing Network
-
LMFNet-2 (
82.49
LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
-
V-FuseNet
79.56
Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks
-
SegFormer-B1
76.92
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
-
DeepLabV3+
72.90
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
-
HRNet-18
75.90
Deep High-Resolution Representation Learning for Visual Recognition
-
FPN
74.86
Feature Pyramid Networks for Object Detection
-
0 of 13 row(s) selected.
Previous
Next
Semantic Segmentation On Vaihingen | SOTA | HyperAI